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Abstract. We find relative equilibria (RE) of the rotating and vibrating tetrahedral molecule P4 and study
the correspondence of these RE’s to the extremal quantum states in the vibration-rotation multiplet and to
the extrema of the semi-quantum rotational energy surfaces obtained for a number of excited vibrational
states. To compute the energy of RE’s we normalize the full rotation-vibration Hamiltonian H of P4

in the approximation of nonresonant modes νE2 and νF2
3 and find the stationary points of the resulting

normal form (known as reduced effective Hamiltonian Heff) which is defined on the reduced phase space
CP2×CP1×S2. Most of these points are fixed points of the symmetry group action on CP2×CP1×S2. To
explain our results in more detail we introduce numerical values of the parameters of H, such as the cubic
force constants, using an atom-atom harmonic potential with one adjustable parameter. This simple model
gives correct qualitative description of the rotational structure of the lowest excited vibrational states ν2,
ν3 and ν2 + ν3 of P4.

PACS. 33.15.Mt Rotation, vibration, and vibration-rotation constants – 33.20.Vq Vibration-rotation
analysis

1 Introduction

Since the early 80-s classical mechanics has been widely
used to give a qualitative description of molecular ro-
tation and vibration (see reviews in [1–5]). Dorney and
Watson [6] interpreted quasidegenerate groups of rota-
tional energy levels, the so-called clusters, in terms of
classical rotation around equivalent symmetry axes of the
molecule. Later this approach was developed extensively
by Harter and co-workers [7,8]. Notably, the classical rota-
tional Hamiltonian function was introduced as a function
EJ(ϕ, θ) on the rotational phase space S2 and relation Ĵx

Ĵy
Ĵz

→ |J|
 sin θ cosϕ

sin θ sinϕ
cos θ

 , |J| =
√
J(J + 1), (1)

was used to obtain classical analogues EJ of the effective
quantum rotational HamiltoniansH(Ĵx, Ĵy, Ĵz). The func-
tion EJ(ϕ, θ) was called the rotational energy surface. It
has one natural parameter, the length of the total angular
momentum J, which is a strictly conserved quantity. For
a meaningful quantum-classical comparison J should be
large.

a e-mail: zhilin@univ-littoral.fr
b UMR 8101 du CNRS

The symmetry of the molecule defines that of EJ (ϕ, θ)
and in particular the number of equivalent minima and
maxima of EJ(ϕ, θ). It was shown in great detail how
these latter correspond to regular sequences of rotational
energy levels and clusters.

Stationary points of EJ(ϕ, θ) correspond to station-
ary axes of rotation or rotational relative equilibria (RE).
Many such points are fixed points of the symmetry group
action on S2 and are entirely defined by the symmetry
of the system. �Zhilinskíı and Pavlichenkov [9] made fur-
ther important step by considering bifurcations of station-
ary points of EJ (ϕ, θ), i.e., bifurcations of rotational RE,
which occur when J changes. Since J is a measure of
rotational excitation of the molecule we can expect that
the system of stationary points becomes more complicated
when J rises.

Classical limit interpretation of quantum vibrational
energy level spectrum began with a 1:1 resonance sys-
tem whose reduced phase space is a 2-sphere [10], also
called a polyad sphere [11]. This space is the same as for
the rotator and the analysis is similar. The reduced vi-
brational “polyad” Hamiltonian Hvib is a function on S2.
At low vibrational excitation (near the limit of lineariza-
tion when the perturbation of the 1:1 harmonic oscillator
is small) stationary points of Hvib correspond to vibra-
tional RE or nonlinear normal modes [12–15]. Bifurcations
of these RE produce other modes, such as the so-called
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Fig. 1. General view of the three Coriolis branches of the
νF2

3 = 1 fundamental state of P4 in the experimentally stud-
ied range of J values. “Semi-quantum” (lines) and quantum
(grey bars) energies are computed using the phenomenological
Hamiltonian of Boudon and co-workers in [23] without scalar
terms Hscalar(J). Indices 4, 3, and 2 on the right end of semi-
quantum lines mark the local symmetries C4, C3, and C2 of
stationary points of the rotational energy surfaces.

local modes. Generalization to polyads of higher dimen-
sional systems required complex projective (CP ) spaces,
such as the polyad phase space CP2 of the 1:1:1 oscillator
system [16,17]. Other systems were studied in a similar
way [5,11,18].

The first attempt to consider rotational classical limit
of excited vibrational states was done in [2,19] where a
group of k vibrational states (a polyad) was considered.
Each state in the polyad is characterized by its own clas-
sical rotational energy function EJi (ϕ, θ) with i = 1, ..., k.
We call this a “semi-quantum” description, because vibra-
tional degree(s) of freedom are kept quantum. Technically,
the functions EJi (ϕ, θ) are eigenvalues of the k × k ma-
trix of the “semi-quantum” Hamiltonian which is obtained
from a quantum rotation-vibration Hamiltonian after re-
placing all rotational operators according to (1) and is a
function of (ϕ, θ) and vibrational operators. A number of
concrete molecular systems was successfully analyzed in
this way in [20,21], and most recently in [22].

1.1 Example of semi-quantum description

To get an idea of the kind of understanding of the struc-
ture of quantum rotation-vibration energy levels which is
obtained in the semi-quantum approach, compare energy
levels of the ν3 = 1 fundamental state of the P4 molecule

-0.10

-0.05

0

0.05

0.10

0.15

0.20

0 10 20 30 40
R

ed
uc

ed
 e

ne
rg

y 
in

 c
m

-1
Angular momentum  J

C4

C3 C2

Fig. 2. The central branch F 0 (J = R) of the ν3(F2) = 1
state of P4 computed using the Hamiltonian in reference [23].
Energies of extrema of rotational energy surfaces are shown by
lines, horizontal grey bars show quantum energy levels (due
to insufficient resolution most clusters of levels are represented
by a single bar). Energies are given without the scalar term
Hscalar(J), see Section 4.2.

and semi-quantum energies of stationary axes of rota-
tion shown in Figures 1 and 2. P4 is a relatively heavy
molecule with a small rotational constant B. The struc-
ture of the ν3 = 1 state of P4 with its three well-known
Coriolis branches (Fig. 1) is typical for tetrahedral and
octahedral molecules [24]. The ν3 vibration induces angu-
lar momentum π whose amplitude equals 1 in the ν3 = 1
state. The Coriolis coupling term Bζ (π · j) is dominant
and the amplitude of R = j − π (called “rotational” an-
gular momentum) is an approximate constant of motion.
The quantum number R equals J−1, J , and J+1 for the
three branches F−, F 0, and F+ respectively; each branch
has 2R+ 1 levels.

In the semi-quantum approach each branch of ν3 is
described by its own rotational energy function EJ (θ, ϕ).
The symmetry group Td and time reversal symme-
try T combine in such a way that the functions EJ (θ, ϕ)
in the space with coordinates (Jx, Jy, Jz) or (J, θ, ϕ) have
octahedral symmetry. Symmetry axes C3, C4, and C2 are
stationary axes of rotation and each function EJ (θ, ϕ)
has 8, 6, and 12 corresponding stationary points. (The
number of equivalent symmetry elements C3, S4, and Cs in
the Td group is 4, 3, and 6 respectively; each element cor-
responds to two fixed points on the phase space S2 which
in turn correspond to two different directions of classical
rotation.) For example, the rotational energy function for
the central branch F 0 is shown in Figure 2. It has max-
ima at the C4 points, minima at the C3 points, and saddle
points at C2. Regular sequences of quantum states can be
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seen near maximum and minimum semi-quantum ener-
gies. In fact these states are highly degenerate 6-fold and
8-fold clusters of levels. The C2 point marks the barrier
between the two level systems.

It follows that we can give a comprehensive qualitative
description of the underlying quantum energy spectrum on
the basis of the semi-quantum description, i.e., knowing
the energies of rotation-vibration relative equilibria (RE).
Thus we can predict different possible localizations (C4

and C3) and estimate the spacing and the number of clus-
ters near the energy of each stable RE using the local one-
dimensional oscillator approximation on S2. Without this
kind of simple description, data on quantum energies of in-
dividual states and complicated phenomenological model
Hamiltonians which reproduce them remain often unsat-
isfactorily difficult to understand.

1.2 Fully classical description

Given all the development summarized above, an anal-
ysis of the quantum rotation-vibration energy spectrum
using an entirely classical system, i.e., a system for which
rotation and vibration are considered classically, appears
as the most direct and logical continuation of the pre-
vious work. Yet it has not been attempted till very re-
cently in [22] where an application of such analysis for
a triply degenerate F2 state of the tetrahedral molecule
Mo(CO)6 was reported. The authors of [22] based their
study on an effective rovibrational Hamiltonian whose
terms (q, p)2Jk had vibrational and rotational part of de-
gree 2 and k = 0, ..., 3 respectively. They found that the
energies of rotation-vibration RE obtained for the classical
analogue of this Hamiltonian and the semi-quantum ener-
gies for stationary points of each of the three rotational en-
ergy surfaces matched exactly. This suggested that even at
the lowest vibrational excitation when the system is very
far from the vibrational classical limit, classical rotation-
vibration relative equilibria remain a useful tool of the
analysis of the quantum spectrum. Substantial progress
in the comparison of quantum, semi-quantum, and classi-
cal description was made at the same time in [26]. This
study continued the analysis of a simple one parameter
system of two coupled angular momenta S and N started
in [25]. In our context, such a model can represent po-
lyads of a doubly-degenerated vibrational mode and ro-
tational multiplets. In this article we provide the first
detailed report on the entirely classical analysis of the
rotation-vibration energy level spectrum of the quantum
vibration-rotation Hamiltonian of a concrete system, the
tetrahedral molecule P4. The necessary theoretical back-
ground is given in a separate paper [27]; further useful
information can be found in the recent review [28].

1.3 Relative equilibria in the ground vibrational state

The phenomenological Hamiltonian Heff (with parame-
ters fitted to experimental data) can only provide infor-
mation on the energies and stabilities of different RE of

the molecule in a particular state. In order to explain and
to predict these characteristics our analysis should begin
with the initial Hamiltonian H. Even when the potential
in H is known poorly, correct qualitative answers and pre-
dictions can still be obtained on the basis of very simple
models. Thus, using a simple harmonic atom-atom poten-
tial we explained in [29] why in the ground vibrational
state of P4 (and of any tetrahedral molecule A4) the en-
ergy of the C3 relative equilibrium is higher than that of
the C4 equilibrium. Similarly it can be demonstrated that
for the ground state of an octahedral molecule B6 the in-
verse is true.

We remind that in [29] all vibrations were “frozen”,
i.e., vibrational kinetic energy was set to zero (p = 0) and
the Hamiltonian H depended only on rotational variables
(jx, jy, jz) and normal mode coordinates q. In this situa-
tion, increasing rotational energy causes such distortion of
the static equilibrium configuration of the molecule which
keeps the total energy H at minimum. Rotational energy
is proportional to the amplitude J of the total angular mo-
mentum j and distortion is described by q. If the molecule
possesses a rotational RE which corresponds to a station-
ary axis of rotation with fixed relative values of (jx, jy, jz),
we can easily find the energy of such RE by determining
the values of q(J) which minimize H(q;J) for each J .

Our present paper extends the above method to ex-
cited vibrational states. In this case, vibrational kinetic en-
ergy cannot be ignored. Instead, approximate vibrational
integrals of motion, the so-called polyad integrals should
be introduced and the system should be normalized. This
approximation is valid near the limit of linearization (at
small vibrational excitations) where we look for relative
equilibria. At given fixed values of polyad integral(s) N
our normalized Hamiltonian is nothing else but the clas-
sical analogue of the effective Hamiltonian Heff used by
spectroscopists to study individual quantum states. To
characterize relative equilibria (for all J and N) we look
for stationary points of the normalized Hamiltonian.

1.4 Example: relative equilibria of a diatomic molecule

The essence of our approach can be well illustrated on the
example of a diatomic molecule which has already been
exploited in [30]. Rotation-vibration of this molecule is
described by a reduced two-body Hamiltonian

H =
p2
r

2µ
+

j2

2µr2
+ V (r), (2a)

where r and pr are internuclear coordinate and corre-
sponding conjugated momentum, µ is reduced mass, and
V (r) is vibrational potential which can be approximated
by a Morse formula

V (r) = De

[
1− e−β(r−re)

]2
, (2b)

with De the dissociation energy, re equilibrium internu-
clear distance, and β a parameter. In the case of nitro-
gen with re = 1.094 × 10−8 cm, De ≈ 60 642 cm−1, and
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Fig. 3. Effective vibrational potential Vj(r) of the diatomic
molecule N2. Dashed bold lines show the two rotational relative
equilibria, dotted lines show an approximation to the potential
by a power series in (r − re) truncated at degree 12.

β ≈ 3.0878 × 108 cm−1, we obtain the potential V (r)
shown in Figure 3.

The amplitude j of the total angular momentum is
a constant of motion whose value J can be used as a
dynamical parameter. For each J the two last terms in
(2a) represent an effective potential Vj(r) (see Fig. 3).
The two equilibria of Vj(r) correspond to two rotational
relative equilibria of the molecule in the limit of vanish-
ing vibrational kinetic energy, i.e., when pr ≈ 0. This is
the approximation of [29,30] where such rotational RE
are found as solutions to the “static” equations for the
extrema of Vj(r).

1.4.1 Vibration-rotation relative equilibria

Our purpose is to show how vibrations should be taken
into account in order to find rotation-vibration RE of
the molecule. The idea in its simplest form is to average
rotation-vibration interaction over vibrations. More pre-
cisely, in order to account correctly for the kinetic energy
term in (2a) we should normalize this Hamiltonian near
its stable equilibrium at q = r − re = 0. Assuming that
the displacement q is small, we Taylor expand (2a)

H =
p2
r

2m
+

j2

2mr2
e

− j2q

mr3
e

+
(

3 j2

2mr4
e

+De β
2

)
q2 + ...

This defines a dimensionless smallness parameter

ε = r−1
e (2mDeβ

2)−1/4 =
(

2B
ω

)1/2

·

We Rewrite the series in the form

H = ω
(
H0 + εH1 + ε2H2 + ...

)
, (3)

with most of the parameters absorbed in ε, and then
rescale canonical variables q and pr in order to bring the
harmonic part H0 to the standard form

H0 =
1
2

(p2 + q2),

while higher order terms become

H1 = −1
2
βre q

3,

H2 =
7
24

(βre)2q4 +
1
2
j2,

H3 = −1
8

(βre)3q5 − j2q,

H4 = +
31
720

(βre)4q6 +
3
2
j2q2.

The first order term H1 equals the Hamiltonian (3) aver-
aged over one period of the orbit of the flow generated by
the Hamiltonian vector field XH0 . In order to normalize
to higher orders we use the standard Lie series computa-
tion [31]. The latter becomes a straightforward oscillator
reduction once we introduce an auxiliary 2-oscillator and
replace j by

j =
1
4

(p2
1 + q2

1 + p2
2 + p2

3),

so that the above terms Hk become homogeneous polyno-
mials in (q, p, q1, p1, q2, p2) of degree k + 2. The resulting
normal form is a Birkhoff series in j and the action integral

n =
1
2

(p2 + q2) = H0.

Only even order terms remain in this series,

Hnf = ω
(
H0 + ε2H2 + ε4H4 + ...

)
,

and in particular

H2 =
1
2
(
j2 − (βre)2n2

)
,

H4 =
3
2

(1− βre)nj2,

H6 =
(

15
4
− 15

2
βre +

69
16

(βre)2 − 7
8

(βre)3

)
n2j2 − j4

2
·

With n = 0 the above normal form Hnf gives the j-series
for the energy of the stable RE of the kind discussed at
length in [29,30]; with j = 0 the same Hnf gives the
Birkhoff n-series for the energy of the nonlinear oscilla-
tor with Morse potential V (r); when both n and j are
nonzero we obtain vibration-rotation energy.

1.4.2 Quantization

We can now quantize integrals n and j using the well-
known rules

n = N +
1
2
, j =

√
J(J + 1),
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Fig. 4. Quantized energy Hnf(n, j) of the stable RE of the
diatomic molecule N2 (thin lines), and energy of two purely
rotational RE (bold lines) as function of J for different fixed
N = n− 1

2 = 0, 1, ..., 25. Dashed line gives the upper limit for
energies at which the effective potential Vj(r) is correctly rep-
resented by a Taylor series truncated to order 12 (see Fig. 3).
Circles show exact (WKB) energies for J = 150 where the last
bound state has Nmax = 22. The insert on the right shows how
orders 2, 4, 6, and 12 of the normal form approximate these
exact energies. Note that the error of the order 12 normal form
Hnf for n ≈ 20 is larger than the distance in energy between
the neighboring quantum states.

where N and J are quantum numbers taking integer val-
ues 0, 1, 2, ..., and compare with exact energies of quantum
levels which can be computed using the usual WKB quan-
tization for the action integral

Sh(N), j =
1

2π

∮
p dq = N +

1
2

along the orbits of the periodic flow of the vector field
XH of the Hamiltonian (2a) at fixed value of angular mo-
mentum j and energy h(N). Results of such computations
for the N2 molecule are presented in Figure 4. It can be
seen that within the validity limits of the Taylor expan-
sion of the effective potential function Vj(q) the quan-
tized normal form Hnf describes all vibration-rotation en-
ergy levels of the molecule by a unique analytic function
E(N, J). In spectroscopy such a function is called a molec-
ular term [32] and is traditionally written as

EN,J = ωe (N + 1
2 )− ωexe (N + 1

2 )2 +Be J(J + 1)

− αe (N + 1
2 )J(J + 1)−De J

2(J + 1)2 + ...

Comparing to Hnf we find spectroscopic parameters of
EN,J for the particular potential (2b)

Be =
ω

2
ε2 =

1
2mr2

e

, αe =
3
2
ω(βre − 1)ε4,

De =
ω

2
ε6, and xe =

1
2

(βre)2ε2.

1.4.3 Generalization to polyatomic molecules

To conclude our example we remark that the diatomic
molecule system has only one vibrational degree of free-
dom and our system is integrable. In the bounded mo-
tion domain the integral n is the total action integral
and the classical energy E is a real analytic function of
n and j which represents the energy of stable rotation-
vibration RE of the diatomic molecule.

For a polyatomic molecule the situation is quite differ-
ent. The system is not integrable and the quantity n can
only be introduced as an approximate integral of motion
when the system is normalized. This approximate inte-
gral represents the dynamical symmetry of the zero order
system (harmonic oscillator H0) and can be associated in-
tuitively with the “size” of the area in the phase space
occupied by the trajectories of the vibrating polyatomic
molecule (at given energy). We used the same approach
for a diatomic molecule and compared the results to an
exact solution in order to give a detailed illustration of
the main technique of our work.

1.5 Summary of the paper

In this paper we study vibration-rotation relative equi-
libria of the four-atomic molecule P4 using the approach
presented in the previous section. We begin with the full
vibration-rotation Hamiltonian and introduce a potential
which is both simple and sufficiently realistic. Then we
introduce approximate dynamical vibrational symmetry
and corresponding integral(s) n and normalize this ini-
tial Hamiltonian accordingly. The normal form Hnf de-
fines equations of motion of the reduced system at fixed n
and j whose values are parameters. Relative equilibria are
stationary solutions of these equations. The number of
different RE at each value of (n, j) is greater or equal the
number of degrees of freedom of the reduced system. Con-
sequently, contrary to the case of a diatomic molecule, at
each value of (n, j) we have a range of energies accessible
to the system. In quantum mechanics we have the corre-
sponding multiplet or polyad of quantum states, such as
shown in Figures 1 and 2.

The P4 molecule has six vibrational degrees of freedom
which constitute the nondegenerate “breathing” mode A1,
and the doubly and triply degenerate modes E and F2.
We use the simplified notation for the coordinates and
conjugated momenta of these modes given in Table 1 and
we also use complex oscillator variables

z = q + ip, z̄ = q − ip. (4)
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Table 1. Notation for vibrational and rotational dynamical
variables of P4.

subsystem traditional notation this paper

F2 mode qF2
α , pF2

α , α = x, y, z qi, pi, i = 1, 2, 3

E mode qEα , pEα , α = a, b or 1, 2 qi, pi, i = 4, 5

A1 mode qA1 , pA1 qa, pa

rotationa momenta jα, α = x, y, z qi, pi, i = 6, 7

a instead of the angular momentum components jα we use
four dynamical variables describing the 1:1 oscillator, see Sec-
tion 2.3.

The zero order vibrational Hamiltonian H0 of P4 repre-
sents a 1-oscillator, a 1:1 oscillator, and a 1:1:1 oscilla-
tor with frequencies ωA1 , ωE and ωF2 respectively. We
assume the absence of any resonances, i.e., we suppose
that these frequencies are incommensurate. Then three
approximate integrals of motion, the polyad integrals na,
ne, and nf with values Na, Ne, and Nf respectively, can
be introduced and perturbations of each of the oscillators
can be reduced so that in particular all crossed (interac-
tion) terms, such as qEqF2 or qA1qEqF2 etc., are eliminated
from the normal form Heff . The remaining terms can be
expressed as various powers of dynamical invariants [27].
In particular, all dependence of Heff on the A1 mode vari-
ables is expressed as power series in na. This happens
because the A1 vibration does not change the geometry of
the molecule. So, for simplicity, we will ignore this mode
(in other words we will assume that na = Na = 0).

Reduction in the absence of resonances between differ-
ent vibrational modes introduces reduced phase spaces for
each of the subsystems; the F2 and E mode reduced phase
space is a complex projective space CP2 and CP1 respec-
tively (recall that CP1 and S2 are diffeomorphic), and the
reduced phase space for the A1 mode is just a point. The
reduced phase space of the rotational subsystem with con-
served total angular momentum j is S2. Neglecting the A1

mode, the total reduced phase space is the direct product
CP2×CP1×S2.

To find relative equilibria (RE) we look for such sta-
tionary points of the normal form Heff on CP2×CP1×S2

which exist anywhere close to the limit of linearization
(i.e., at any small perturbation ε). Most of the RE are
entirely defined by the symmetry of our system. These
RE correspond to the stationary points of Heff which lie
on the critical orbits of the symmetry group action on
CP2×CP1×S2 (they are isolated fixed points of the group
action). To find these points we should analyze the group
action.

The discrete symmetry group of our system is an ex-
tension of the spatial symmetry group Td of the equilib-
rium configuration of P4 by the time reversal operation
(also called momentum reversal) which acts on the dy-

namical variables as follows

(j1, j2, j3)→ (−j1,−j2,−j3), (5a)
(z1, ..., z5)→ (z̄1, ..., z̄5). (5b)

The extended group can be represented as a direct prod-
uct Td×Z2 of Td and an abstract group of order 2 and is
isomorphic to the Oh group [27]. Like in [27], we use the
notation T instead of plain Z2 to underline association of
this group with time reversal. The group action of Td×T
on CP2×CP1×S2 and on its different subspaces is studied
in [27] where coordinates of all critical orbits and invariant
subspaces of this action are given.

An elementary study of the stability of relative equi-
libria is important for the comparison to quantum me-
chanics. Near a sufficiently stable RE we can expect to
find localized quantum states. The energy of such states
can be estimated using a local approximation for small
oscillations about the RE. The number of equivalent RE
defines the number of quasi-degenerated localized states
(a cluster). Many examples can be found in the rotational
system and in vibrational systems with two degrees of
freedom. In the latter case, the nodes of localized wave-
functions lie along the RE and the number of nodes gives
the polyad number [15]. Stability of RE is also required
when Morse conditions for the stationary points of the re-
duced Hamiltonian Heff are checked in order to determine
whether all RE are found.

The rest of this paper is organized as follows. In Sec-
tion 2 we define the complete rotation-vibration Hamilto-
nian for the four-atom tetrahedral molecule P4; we also
introduce a simple model potential of P4 with one phe-
nomenological force constant K. In Section 3 we reduce
this Hamiltonian in the approximation of polyads formed
by nonresonant modes νE2 and νF2

3 , i.e., assuming incom-
parable frequencies of the E and F2 modes and neglecting
the totally symmetric “breathing” mode A1. This step is
similar to quantum reduction (known as contact trans-
formation) which is widely used in spectroscopy [33]. We
express our reduced Hamiltonian Heff (the normal form)
in terms of a symmetry adopted rovibrational polyno-
mial basis similar to the one used by spectroscopists.
In Section 4 we study relative equilibria as stationary
points of Heff on CP2×CP1×S2. We introduce the inte-
grals of motionNe,Nf , and J and the reduced phase space
CP2×CP1×S2. Using coordinates of critical orbits of the
action of the finite symmetry group on CP2×CP1×S2

found in [27] we obtain the value of Heff on the criti-
cal orbits. This gives analytic expression for the energy
of RE’s as function of Ne, Nf , and J . We also find ad-
ditional RE which correspond to non-critical orbits. In
Section 5 we determine the values of the two parame-
ters, the atom-atom harmonic potential constant K and
the equilibrium distance P–P, which enter in our formu-
lae together with Ne, Nf , and J . To this end we use the
comparison to the phenomenological spectroscopic study
of the νF2

3 fundamental (Ne = 0, Nf = 1) by Boudon
and co-workers [23]. We follow by computing predictions
for the E-state (Nf = 0, Ne = 1), the combination state
(Nf = 1, Ne = 1), and some higher polyads.
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2 Full rotation-vibration Hamiltonian of P4

Our derivation of the rotation-vibration Hamiltonian H
follows the classic spectroscopic procedure in Chapter 11
of [34], see also [35,36]. After excluding translation of the
center of mass, we assume that the atoms of P4 vibrate
about a well defined static equilibrium configuration and
that the amplitudes of vibrations are small, so that the
frame rotating with the molecule is also meaningfully de-
fined.

2.1 Kinetic energy

To find the kinetic energy we begin with the velocity of
each atom i = 1, ..., 4 in the rotating frame

Ω ∧
(
R0
i + ri

)
+ ṙi, (6a)

where Ω is the vector of angular velocity, and R0
i and ri

give equilibrium position and displacement of atom i re-
spectively. All allowed displacements are defined by nor-
mal modes

ri =
∑

qk%
i
k, k = A1, Ea, Eb, F2x, F2y, F2z , (6b)

and obey automatically the center of mass and the Eckart
condition∑

i

miui = 0, ui = ri, ṙi, (R0
i ∧ ri), (R0

i ∧ ṙi). (6c)

The kinetic energy T can be now written as

2T =
∑
i

mi

[
(Ω ∧ (R0

i + ri))2 + ṙ2
i + 2Ω(ri ∧ ṙi)

]
, (7)

where the displacement and internal velocity of each atom
are functions of six normal mode coordinates and corre-
sponding time derivatives, i.e., ri = ri(q) and ṙi = ṙi(q̇).
To rewrite T in the Hamiltonian form we define the gen-
eralized momenta

jα =
∂T

∂Ωi
, α = x, y, z, pk =

∂T

∂q̇k
, (8)

so that the kinetic energy in (7) becomes

2T = (j− π)Tµ(q) (j− π) +
∑ p2

k

m
· (9)

This expression plus a vibrational potential U(q) is often
called the Howard-Wilson Hamiltonian [37].

Direct calculation using normal mode definitions
in [29] gives concrete expressions for π and µ in the case
of P4. The 3-vector π is the angular momentum induced
by the vibration,

π1 =
1
2

(
p2q3 − p3q2 + q5p1 − p5q1 +

√
3(q4p1 − p4q1)

)
,

π2 =
1
2

(
p3q1 − p1q3 + q5p2 − p5q2 +

√
3(p4q2 − q4p2)

)
,

π3 =
1
2

(
p1q2 − p2q1

)
+ p5q3 − p3q5·

The matrix µ is the inverse of the matrix of the modified
inertia tensor

I ′ = mR2
[
1 +

2
√

2√
3
qa +

2
3
q2
a + I(q)

]
, (10)

where

I1,1 = − 1√
3
q4 + q5 −

√
2

3
qaq4 +

√
2√
3
qaq5

+
1
12
(
q4 −

√
3 q5
)2 +

1
4
(
q2
3 + q2

2

)
I2,2 = −1

3
(q4 +

√
3 q5)(

√
2qa +

√
3)

+
1
12
(
q4 +

√
3 q5
)2 +

1
4

(
q2
1 + q2

3

)
I3,3 = +

2√
3
q4 +

2
√

2
3
qaq4 +

1
3
q2
4 +

1
4

(
q2
1 + q2

2

)
,

I1,2 = −q3 −
√

2√
3
qaq3 +

√
3

6
q4q3 +

1
4
q1q2,

I1,3 = −q2
(

1 +
√

2√
3
qa +

√
3

12
q4 +

1
4
q5
)

+
1
4
q3q1,

I2,3 = −q1
(

1 +
√

2√
3
qa +

√
3

12
q4 −

1
4
q5
)

+
1
4
q2q3.

2.2 Model potential

The potential energy U(q) of P4 is known poorly. The
harmonic atom-atom potential

2U(q) = K
4∑

i,j>i

[
|R0

i + ri(q)−R0
j − rj(q)| −R

]2
, (11)

provides a simple model which implies that the potential
energy of the molecule depends only on the deformation
of the six atom-atom bond lengths. This potential was al-
ready used in [29] to obtain a qualitatively correct descrip-
tion of the rotational RE of P4 in the absence of vibrations
(when all pk = 0) and we can expect that it will work as
well when vibrations are excited (pk 6= 0). There are two
unknown parameters in (11), the value of R = |R0

i | defin-
ing the “size” of the molecule, and the harmonic force
constant K of the P–P bond. The former parameter can
be determined from the rotational constantB while K can
be adjusted in order to reproduce most closely the values
of the three harmonic normal mode frequencies ωF2 , ωE ,
and ωA1 (see Sect. 5.2.1).

2.3 Series expansion and parameterization

To represent the initial rotation-vibration Hamiltonian H
as a power series in dynamical variables in Table 1,

H = H0 + εH1 + ε2H2 + ...

= z2 + εz3 + ε2z4 + ..., (12)
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we Taylor expand H = T (q, p, j) + U(q) in q and rescale
(p, q) to bring the harmonic part H0 to the standard form

H0 = ωA1na + ωEne + ωF2nf + 0j , (13)

where na, ne, nf , and j are harmonic oscillators,

na =
1
2

(p2
a + q2

a) =
1
2

(zaz̄a),

j =
1
4

(p2
6 + q2

6 + p2
7 + q2

7) =
1
4

(z6z̄6 + z7z̄7),

ne =
1
2

(p2
4 + q2

4 + p5
2 + q2

5) =
1
2

(z4z̄4 + z5z̄5),

nf =
1
2

3∑
k=1

(p2
k + q2

k) =
1
2

(z1z̄1 + z2z̄2 + z3z̄3).

For the uniformity of the approach and of calculations
we represent rotational dynamical variables j1, j2, j3 of
the initial Hamiltonian (components of the total angular
momentum j) using coordinates and conjugated momenta
of an auxiliary 1:1 oscillator with exact S1 symmetry and
corresponding strict integral of motion j defined above.
Since j is quadratic in (p, q) the frequency of this auxiliary
oscillator formally equals 0 (and the rigid rotor energy
Bj2 is the lowest order purely rotational perturbation of
degree 4). We use standard oscillator expressions for the
components of j, j1

j2
j3

 =
1
4

 z6z̄6 − z7z̄7

z6z̄7 + z7z̄6

i(z6z̄7 − z7z̄6)

 (14)

and use (4) to replace all (q, p)’s for z’s. This gives

H = ω(H0 + εH1 + ε2H2 + ε3H3 + ...) (15a)

where

H0 =
√

2nf + ne + 2na + 0j, (15b)

and ω is an “adjustable” parameter,

ω =

√
K

m
=
ωF2√

2
= ωE =

1
2
ωA1 . (15c)

With ω in (15a) factored out, the smallness parameter ε
absorbs all residual dependence on the force constant K
and mass m,

ε =
1

R(Km)1/4
· (15d)

Note that H2 contains the rigid rotor term 1
2 j

2. Since the
rigid rotor energy is written as

Bej
2 =

1
2mR2

j2 (15e)

it also follows that

ε2 =
2Be
ω
· (15f)

Different perturbation terms in (15a) are characterized in
Table 2.

Table 2. Rotation-vibration perturbation terms.

order degree type of the term

ε z3 cubic anharmonic terms
ε2 z4 quartic anharmonic terms

z2j Coriolis interaction
j2 “rigid rotor” rotation

3 Normalization and reduction

The approximate dynamical symmetry of the system
with Hamiltonian (15a) is defined by the zero-order term
H0 in (15b). We assume that the frequencies of the
three modes A1, E and F2 are incommensurate. (In our
model (11) this holds for ωF2 and ωE whose ratio equals√

2.) Then the four vector fields Xna , Xnf , Xne , and Xj

define an approximate dynamical symmetry group of the
4-torus. Normalization of Hamiltonian (12) removes all
terms which do not commute with integrals na, nf , ne,
and j. (Note that a priori {H, j} = 0 since the total an-
gular momentum j is a strict integral.) Remaining terms
in the normal form Heff are symmetric with regard to the
dynamical group; Heff is an effective rotation-vibration
Hamiltonian describing polyads of nonresonant modes A1,
E, and F2.

3.1 Reduction

In the absence of resonance the two components

Xf =
3∑
i=1

[
zi

∂

∂zi
− z̄i

∂

∂z̄i

]
, Xe =

5∑
i=4

[
zi

∂

∂zi
− z̄i

∂

∂z̄i

]
of the vector field of H can be separated so that the cor-
responding flows ϕf and ϕe define two distinct dynamical
S1 symmetries. The action of these symmetries on the
initial vibrational phase space (C3 × C2 with coordinates
z1, ..., z5) is free and proper. In the case of ϕf we map the
S1 orbits

ϕf : (tf , z)→ exp(itf )z,

where z = (z1, z2, z3), and 1
2 |z|2 = nf = const, to distinct

points in CP2, i.e., we identify all points z in C3, the
initial phase space of the F2 mode, which have the same
module

√
nf/2 and differ only in common phase exp(itf ).

Similarly we map the S1 orbits

ϕe: (te, z)→ exp(ite)z, z = (z4, z5),

to points on the 2-sphere S2 (or on CP1). In particular,
since points (z1, z2, z3) with tf = 0 and (−z1,−z2,−z3)
with tf = π lie on the same orbit, inversion in the initial
space C3 reduces to identity in CP2. Therefore, when we
analyze the image of the finite symmetry group of our
system in the reduced phase space CP2 × S2 we should
only consider proper rotations of the initial phase space
and momentum reversal in (5b).



Ch. van Hecke et al.: Rovibrational relative equilibria of P4 21

3.2 Coordinates on the reduced phase space

The reduced phase space of our system is a direct product
of the F2-mode space CP2, the E mode space CP1 ∼ S2,
and the rotational sphere S2 characterized by the val-
ues Nf , Ne, and J of polyad integrals nf , ne, and of
the total angular momentum j respectively [27]. Each rel-
ative equilibrium (RE) of our system is an equilibrium
of Heff and is represented by a point on this reduced
phase space CP2×CP1×S2. Like any other orbits of the
action of the dynamical symmetry, relative equilibria can
be uniquely characterized by the values of dynamical in-
variants [27]. However, we can also use initial coordinates
(z, z̄) or charts.

For example, the E-mode sphere S2 is defined by the
equation

v2
1 + v2

2 + v2
3 =

1
4
n2
e = const,

where dynamical invariants v1, v2, and v3 are defined sim-
ilar to j1, j2, and j3 as quadratic polynomials in (z4, z̄4,
z5, z̄5) [27]. Any point on this sphere can be defined by the
values of (v1, v2, v3) keeping in mind that v2

1+v2
2+v2

3 equals
a constant 1

4N
2
e . The same point on the diffeomorphic

space CP1 can be defined using z = (z4, z5) if we remem-
ber that |z4|2 + |z5|2 = 2ne is fixed and ignore the com-
mon phase. Similarly, coordinates (j1, j2, j3) = (0, 1, 0),
z = (1,−i), z = (i, 1), and z = (ieiφ, eiφ) define the same
point on the rotational sphere S2 ∼ CP1. In general, we
can define a point on CPk using k+1 complex coordinates
z = (z1, z2, ..., zk+1) on Ck+1 if |z1|2 + |z2|2 + · · · |zk+1|2 is
a constant and points z and z exp(iφ) with the common
phase 0 ≤ φ ≤ 2π are considered as the same point.

3.3 Normal form

Once the HamiltonianH is put in the oscillator form (15a)
we can use the standard Lie transform method [31] to
normalizeH. All odd orders (odd degrees in (z, z∗)) vanish
in the resulting normal form which is a power series in ε2,

Hnf = ω(H0 + ε2H2 + ε4H4 + ε6H6 + ...), (16)

whose termsH2k Poisson commute with H0. To obtain the
reduced Hamiltonian Heff , we express all terms in (16)
as functions of basic invariant polynomials [27], i.e., as
functions on the reduced phase space CP2×CP1×S2. Due
to algebraic dependencies between these polynomials (or
“sygyzies”) a special polynomial basis, such as a Gröb-
ner basis or an integrity basis [27] should, in general, be
constructed. We use the tensorial basis described in Sec-
tion 3.4 below. At the same time, in order to study the
dynamics of the reduced system, i.e., to study equations
of motion on CP2×CP1×S2, and in particular to study
equilibria of Heff , we should know expression of Heff in
terms of dynamical variables of the initial or of the re-
duced system, see [27] for more details.

Table 3. Effective rotation-vibration polyad basis for the
tetrahedral molecule A4 with the full symmetry group Td×T
in the limit of non-resonant vibrational modes E and F2 (de-
noted e and f). The× sign and brackets denote tensor products
with respect to the Td group; the ⊕ subscript indicates explicit
T -symmetrization 1

2 (V + V̄ ). Note that quantum operators a

and a+ correspond to z/
√

2 and z̄/
√

2 respectively.

notation explicit tensorial definition

H0
αα

1
2

P[α]
i z̄αizαi

H
Ω(K,Γ )
αβ

1
2

�
[z̄αzβ]Γ ×RΩ(K,Γ )

�A1

V Γαβαβ
1
4

�
(z̄αz̄β)Γ × (zαzβ)Γ

�A1

H
1(1,F1)

(αβ)Γ1(αβ)Γ2

1
4

h�
(z̄αz̄β)Γ1 × (zαzβ)Γ2

�F1 ×R1(1,F1)
iA1

VααΓ ′βΓααΓ ′′βΓ
1
8

h�
(z̄αz̄α)Γ

′×z̄β
�Γ × �(zαzα)Γ

′′×zβ
�Γ iA1

⊕

3.4 Tensorial basis

Tensorial bases are widely used in spectroscopy to account
for specific symmetries and to represent effective Hamilto-
nians. Polynomials in tensorial bases are constructed ac-
cording to the tensor product rules of the symmetry group
of the effective Hamiltonian. To respect dynamical sym-
metries the number of z variables of each mode (E and F2)
should equal the number of z̄ variables of the same mode.
(In quantum mechanics this corresponds to diagonal po-
lyad tensor operators with the same number of creation
and annihilation operators for each mode.)

As an example consider a purely vibrational quartic
anharmonic term V in H2. To be dynamically symmet-
ric (i.e., to Poisson commute with H0) V has to be of
the type z̄z̄zz. With the mode restrictions also taken into
account, there can be only three possibilities

z̄f z̄fzfzf , z̄f z̄ezfze, z̄ez̄ezeze,

where f and e stand for any of the indices (1, 2, 3) and
(4, 5) respectively (see Tab. 1). At the same time, V should
be totally symmetric with regard to the symmetry group
Td×T of the initial Hamiltonian. Such symmetrized quar-
tic products can be constructed as tensor products of two
factors which transform according to the same irreducible
representation Γ of Td (see Tab. 3). For example consider

V F1
efef =

[(
z̄E z̄F2

)F1 ×
(
zEzF2

)F1
]A1

=
1√
3

3∑
σ=1

V̄F1
σ VF1

σ ,

where VF1
σ with σ = 1, 2, 3, is a tensor product

VF1
σ =

(
zE × zF2

)F1

σ
=
√

3
2∑

σ′=1

3∑
σ′′=1

(
E F2 F1

σ′ σ′′ σ

)
zEσ′z

F2
σ′′
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and V̄F1
σ is obtained from VF1

σ by conjugation z → z̄. Using
Clebsch-Gordon coefficients for the Td group [38] we find

VF1 =
1
2

 (z5 + z4

√
3)z1

(z5 − z4

√
3)z2

− 2 z5z3

 ·
Rotational tensors are built directly from the components
of the total angular momentum (j1, j2, j3). We use ten-
sors RΩ(K,Γ )

σ constructed by Moret-Bailly [38,39,46] for
the group chain O(3) ⊃ Oh. Here Ω is the total degree in
(j1, j2, j3), K ≤ Ω is the index of the irreducible repre-
sentation of the O(3) group, and (Γ, σ) is the irreducible
representation of Oh and its row (projection). Odd-K ro-
tational tensors are antisymmetric with regard to time
reversal in (5a). As a consequence, vibrational part of
rotation-vibration tensors with odd K should be antisym-
metric with regard to (5b). For example, the F2 mode
Coriolis term has the form

H
1(1,F1)
ff =

1
4
√

3

3∑
σ=1

[
zF2 × z̄F2

]F1

σ
R1(1,F1)
σ .

Both the vibrational part of this tensor

[
zF2 × z̄F2

]F1 =
1√
2

 z3z̄2 − z2z̄3

z1z̄3 − z3z̄1

z2z̄1 − z1z̄2


and the rotational part

R1(1,F1) = 2i(j1, j2, j3)

are antisymmetric with regard to time reversal T .
All different types of tensor constructions required to

express the normal form (16) up to order H4 are sum-
marized in Table 3. Our definitions follow plain tensor
product notation albeit for a few commonly used polyno-
mials, such as harmonic terms ne = Hee, nf = Hff , and
j2. We also introduce an additional factor 2−k/2, where k
is the degree in vibrational variables (z, z̄), to account for
the difference between the classical dynamic variables and
quantum creation-annihilation operators

a =
1√
2

(q − ip), a+ =
1√
2

(q + ip).

We should note that our tensorial construction produces
complete sets of polynomials of any given degree in (z, z̄)
but, contrary to an integrity basis or a Gröbner basis, does
not guarantee linear independence. Up to order six we did
not encounter this difficulty, but it can become a problem
for larger degrees.

3.5 Parameters of the reduced Hamiltonian

Expression of the normal form (16) in terms of the
symmetry-adopted tensorial basis (Tab. 3) is presented
in Tables 4 and 5. Comparison of these results to spec-

Table 4. Effective rovibrational polyad Hamiltonian (normal
form) of the P4 molecule calculated with a harmonic atom-
atom potential in the limit of non-resonant modes E and F2.

order term in effective Hamiltonian parameter

this work notation in [38] value

0 H0
ff T 0

ff

√
2

0 H0
ee T 0

ee 1

2 J2 T 2(0,A1) 1/2

2 H
1(1,F1)
ff −

√
3T

1(1,F1)
ff

√
6/4

2 V A1
eeee 2TA1

eeee −27/16

2 V Eeeee
√

2TEeeee 9
√

2/32

2 V A1
ffff 2TA1

ffff −5/6

2 V Effff
√

2TEffff 521
√

2/1344

2 V F2
ffff 2TF2

ffff/
√

3 −5
√

3/96

2 V F1
efef TF1

efef/
√

3 15
√

6/16

2 V F2
efef TF2

efef/
√

3 −67
√

6/336

4 H
2(0,A1)
ff − 4

3 T
2(0,A1)
ff −17

√
2/32

4 H
2(2,E)
ff

√
2T

2(2,E)
ff −23/32

4 H
2(2,F2)
ff

√
3T

2(2,F2)
ff 17

√
6/64

4 H
2(0,A1)
ee − 2

√
2√
3
T

2(0,A1)
ee

√
6/4

4 H
2(2,E)
ee

√
2T

2(2,E)
ee −3

√
6/16

6 H
3(1,F1)
ff −

√
3T

3(1,F1)
ff 43

√
2/80

6 H
3(3,F1)
ff −

√
3T

3(3,F1)
ff 27

√
15/160

6 H
3(3,A2)
ee −T 3(3,A2)

ee −7/8

6 J4 T 4(0,A1) −7/60

6 R4(4,A1) T 4(4,A1) −
√

30/640

troscopic parameters is straightforward. The values of the
latter equal the coefficients in Table 4 times ωεk where k
is the order of the term. The values of ω and ε themselves
should be determined from a spectroscopic or ab initio
study as we do in Section 5.2.1.

3.6 Parameters of the effective dipole moment

The most important interaction of the vibrating molecule
with light is due to the oscillating electric dipole mo-
ment M . The ν3 mode of P4 is the only active mode in
the absorption spectrum because the qF2

3 normal mode is
the only distortion of the tetrahedral equilibrium config-
uration which induces M . In the initial vibrational co-
ordinates of (9) and (11) the vector of the vibrationally
induced dipole moment M equals µel q

F2
3 where µel is a

molecular parameter which depends, among other factors,
on the properties of the electronic state.

In the transformed coordinates of the normal form Heff

the dipole moment M is represented by a power series in
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Table 5. High order anharmonic terms in the effective rovib-
rational polyad Hamiltonian of the P4 molecule.

order term in Heff parameter value

4 H
1(1,F1)
efF1efF1

−83
√

6/784 + 23
√

3/392

4 H
1(1,F1)
efF2efF2

1327
√

6/784 + 23
√

3/392

4 H
1(1,F1)
efF1efF2

−933
√

2/196 + 23/196

4 H
1(1,F1)
ffEffF2

107
√

6/2352

4 H
1(1,F1)
ffF2ffF2

−173
√

3/96

4 VeeA1eE.eeA1eE −1215
√

2/2048

4 VeeEeA2.eeEeA2 1971/512

4 VeeEeA1.eeEeA1 −2565/512

4 VffF2fA1.ffF2fA1 6887
√

2/9216

4 VffEfF1.ffEfF1 77561
√

6/37632

4 VffA1fF2.ffA1fF2 57175
√

6/225792

4 VffF2fF2.ffF2fF2 −819893
√

6/903168

4 VffEfF2.ffEfF2 −1657633
√

6/12644352

4 VeeEfF1.eeEfF1 124949
√

6/75264

4 VeeEfF2.eeA1fF2 −445909
√

6/790272

4 VeeEfF2.eeEfF2 −4548679
√

6/1580544

4 VeeA1fF2.eeA1fF2 3669209
√

6/1580544

4 VffEeE.ffA1eE 919579
√

2/225792

4 VffA1eE.ffA1eE 2400913
√

2/790272

4 VffEeA1.ffEeA1 −469711
√

2/301056

−20755921/3161088

4 VffEeA2.ffEeA2 −469711
√

2/301056

+718247/150528

4 VffF2eF2.ffF2eF2 −247675
√

3/790272

4 VffEeE.ffEeE 469711/150528

−2836367
√

2/3161088

4 VffF2eF1.ffF2eF1 −21827
√

3/43904

q, p, and j and is called an effective dipole moment Meff ,

Meff = µel(M0 + εM1 + ε2M2 + ...),

where the series in the brackets is nothing else but the
expression of the initial coordinates q3 in terms of trans-
formed variables (qE2 , p

E
2 , q

F2
3 , pF2

3 ) and j. This expression
is given by the Lie exponent constructed from the gener-
ator of the normal form transformation [31].

The electric dipole moment in the molecule fixed frame
is a 3-vector which transforms (as any other vector) ac-
cording to the irreducible representation F2 of the Td
point group and is invariant with respect to time reversal
T . This restricts the form of the terms in Meff . Table 6
presents some of the terms inMeff obtained using the same
Lie transformation that resulted in our normal form Heff .

4 Rotational-vibrational relative equilibria

Equilibria of Heff which exist at any arbitrarily small
perturbation ε, are relative equilibria (RE) or nonlinear

Table 6. Principal terms in the effective vibrational electric
dipole moment of the P4 molecule.

order term in Meff parameter band

0 qF2
3 1 0→ ν3

1
�
qF2
3 qF2

3

�F2 21/4/4 0→ 2ν3

1
�
pF2

3 pF2
3

�F2 2−3/4 0→ 2ν3

1
�
qF2
3 qE2

�F2 −
√

3/21 0→ ν3+ν2

1
�
pF2

3 pE2
�F2 −2

√
6/21 0→ ν3+ν2

2
�
pE2 R

1(1,F1)
�F2 21/4 0→ ν2

2
�
pF2

3 R1(1,F1)
�F2 0

2 terms of the type p2q and q3

3 R2(2,F2) −23/4/24 0→ 0
3 terms of the type pqj, q2p2, and q4

4 j2qF2
3 −49/48 0→ ν3

4
�
qF2
3 R2(2,F2)

�F2 −49/27 0→ ν3

4
�
qF2
3 R2(2,E)

�F2 29
√

6/27 0→ ν3

4
�
qE2 R

2(2,F2)
�F2 19 21/4

√
6/48 0→ ν2

4 terms of the type pq2j, p3j, qp4, q3p2, and q5

normal modes of the initial rotation-vibration Hamilto-
nian H. Many RE of our highly symmetric system can
be found using only symmetry arguments [27]. The ac-
tion of the discrete symmetry group Td×T on the reduced
phase space CP2×CP1×S2 has a number of isolated fixed
points [27] which are necessarily stationary points of the
reduced Hamiltonian Heff . However, as shown in [27], Heff

has several other equilibria which are not fixed but never-
theless exist for any Td×T symmetric Morse function Heff

on CP2×CP1×S2. We also consider such equilibria as RE.
The value of Heff at fixed points of the group action

found in [27] gives the energy of RE as function of the
three integrals of the reduced system j, ne, and nf . Know-
ing the energy of all RE at given fixed values J , Ne, and
Nf we can describe the structure of the energy level mul-
tiplet of the corresponding quantum system characterized
by quantum numbers J , Ne, and Nf . Note that in the
original phase space our relative equilibria are tori; ac-
tion integrals along appropriate directions on these tori
(at fixed energy) give J , Ne, and Nf .

4.1 Analysis of finite symmetries, fixed points

The full symmetry group of our initial Hamiltonian is
Td×T . The symmetry group Td is originally defined as
a group of transformations of the 3-space R3 with co-
ordinates (x, y, z). Its action is extended symplectically
to (px, py, pz). The action of T in (5) is anti-symplectic
(changes the sign of the symplectic form). Action of Td×T
on CP2×CP1×S2 is described fully in [27] on the basis of
the analysis of the Td×T action on the components of the
F2 mode (q1, q2, q3) which transform as (x, y, z), on the E-
mode variables, on the angular momentum components,
and subsequently on the spaces CP2, CP1, and S2.

We would like to draw attention to the predecessors
of [27]. Thus the action of point groups on the rota-
tional sphere S2 has been analyzed explicitly or implicitly
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Table 7. Full stabilizers and number of points in the critical
orbit of each type on the CP2 space. Symmetry operations
Cs ◦ T and C2 ◦ T are denoted as T2 and Ts. The number of
points corresponds to the number of equivalent fixed RE in the
case of polyads of the νF2

3 mode.

type shorthand full stabilizer number
of orbit notation see [27] of points

B,C S4 S4 ∧ T2 6
B,C C3 C3 ∧ Ts 8
A S4 D2d ∧ T 3
A C3 C3v ∧ T 4
A Cs C2v ∧ T 6

in many studies of classical molecular rotational systems
(see Sect. 1). Group action on the reduced space of the
2-oscillator with symmetry, notably of the E-mode vibra-
tion of triatomic molecules with three-fold symmetry [15]
and others [11] was studied in a similar way. Finally, ac-
tion of the Td group on CP2 was studied in [16] more than
a decade ago. Further information can be found in [28].

For an idea of how the group action is found, consider
the 2-sphere defined by j2

1 + j2
2 + j2

3 = 1 and rotate this
sphere about axis j1. Such an operation has, obviously,
two fixed points with j1 = ±1. In fact for any rotation
we have two fixed points on the sphere. Similarly, for any
rotation we consider a point in CP2 lying on the axis of
rotation and a subspace orthogonal to the axis. The for-
mer is obviously an isolated fixed point, while the latter
is a CP1 ∼ S2 subspace of CP2 which may contain other
symmetric or fixed points. Thus, if we rotate through 2π/k
about axis z1, we should consider the point (1, 0, 0) and
the subspace CP1 with z1 = 0 and |z2|2 + |z3|2 = 1. In
the case k = 2, operation C2 sends (z2, z3) to (−z2,−z3)
which is the same point on CP1 and therefore the whole
CP1 ∼ S2 subspace is C2-invariant. For higher symmetries
k > 2 we always have two fixed points on CP1 ∼ S2.

Fixed points of the Td×T action form orbits of equiv-
alent points. Relative equilibria (RE) corresponding to
different points in the same orbit are equivalent. Orbits
are distinguished by their full stabilizer [27] listed in the
third column of Table 7. Below we use the simplified no-
tation of the Td group, the alternative O group notation
C4, C3, C′2 is also popular. In Table 8 each orbit is repre-
sented by one fixed point with stabilizer Sz4 , C3[111] and
Cxys respectively (see [27] for explicit definition of group
operations). All other points in the same orbit with con-
jugated stabilizers can be obtained from the given point
using other symmetry operations of Td, such that for ex-
ample Sx4 = R ◦ Sz4 ◦ R−1. Of course, the value of the
reduced Hamiltonian Heff is the same at each of the equiv-
alent points in the orbit.

Orbits of fixed points on CP2×CP1×S2 with stabiliz-
ers S4 and C3 can be of six types labeled A1, A2, B1, B2,
C1, C2. Projection of the A points in the F -mode space
CP2 lies on the rotation axis while such projections of
the B or C points lie on the CP1 subspace of CP2 orthog-
onal to this axis; indices 1 and 2 distinguish two different
possibilities in the E-mode space. Critical orbits of the Td

Table 8. Fixed points of the Td×Z2 group action on the re-
duced phase space CP2×CP1×S2 (according to [27]).

a. Stabilizer Sz4 (or C4), rf =
p
Nf , re =

√
2Ne, rj = J .

point
z1

rf

z2

rf

z3

rf

z4

re

z5

re

j1
rj

j2
rj

j3
rj

A1 0 0
√

2 1 0 0 0 1

A′1 0 0
√

2 1 0 0 0 −1

A2 0 0
√

2 0 1 0 0 1

A′2 0 0
√

2 0 1 0 0 −1
B1 1 i 0 1 0 0 0 1
B′1 1 −i 0 1 0 0 0 −1
B2 1 i 0 0 1 0 0 1
B′2 1 −i 0 0 1 0 0 −1
C1 1 i 0 1 0 0 0 −1
C′1 1 −i 0 1 0 0 0 1
C2 1 i 0 0 1 0 0 −1
C′2 1 −i 0 0 1 0 0 1

b. Stabilizer C3 [111], rf =

p
2Nf√

3
, re =

√
Ne, rj =

√
3J ,

χ = exp(2πi/3).

point
z1

rf

z2

rf

z3

rf

z4

re

z5

re

j1
rj

j2
rj

j3
rj

A1 1 1 1 1 i 1 1 1
A2 1 1 1 1 −i 1 1 1
B1 1 χ χ̄ 1 i 1 1 1
B2 1 χ χ̄ 1 −i 1 1 1
C1 1 χ χ̄ 1 i −1 −1 −1
C2 1 χ χ̄ 1 −i −1 −1 −1

c. Stabilizer Cxys (or C2), rf =
p
Nf , re =

√
2Ne, rj = J/

√
2 .

point
z1

rf

z2

rf

z3

rf

z4

re

z5

re

j1
rj

j2
rj

j3
rj

A1 1 −1 0 1 0 1 −1 0
A2 1 −1 0 0 1 −1 1 0

action with stabilizer Cs are only of type A. Other possi-
ble points with stabilizer Cs (which can be considered as
analogs of B and C) are not fixed entirely by symmetry,
but lie on the Cs invariant subspace of CP2×CP1×S2 and
are not critical (not isolated).

For the example of Sz4 points in Table 8a we list points
of type A′, B′, and C′, which are time reversal images
of A, B, C. With regard to the Td group action A and A′
represent different orbits because no operation in Td maps
A→ A′. With regard to the action of the full group Td×T ,
points of the type A and A′ (similarly for B and B′, C
and C′) belong to the same orbit (are equivalent). For the
corresponding trajectories of the initial system this means
that A and A′ is a pair of trajectories which fill the same
torus and share the same configuration space image but
run in opposite directions.
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Table 9. Values of reduced the Hamiltonian Heff on critical orbits, or energy of relative equilibria entirely defined by symmetry.
The symmetry of the orbit is indicated by superscripts (2), (3), (4); upper sign in ± or ∓ corresponds to the first point specified
by type (B,C) or index 1,2.

point order ε2 order ε4 terms q2J2 order ε4 terms q4J order ε6

A
(2)
1

5

12

√
2NfJ

2 − 11

8
NeJ

2 +
1

80
J4

A
(2)
2

5

12

√
2NfJ

2 − 5

8
NeJ

2 +
1

80
J4

A
(4)
1

5

3

√
2NfJ

2 − 1

4
NeJ

2 − 1

20
J4

A
(4)
2

5

3

√
2NfJ

2 − 7

4
NeJ

2 − 1

20
J4

(B,C)
(4)
1 ∓1

2
NfJ

11

48

√
2NfJ

2 − 1

4
NeJ

2 ∓ 107

2352

√
2N2

f J ±
11

8
NfNeJ − 1

20
J4 ± 1

12
NfJ

3

(B,C)
(4)
2 ∓1

2
NfJ

11

48

√
2NfJ

2 − 7

4
NeJ

2 ∓ 107

2352

√
2N2

f J ±
1949

392
NfNeJ − 1

20
J4 ± 1

12
NfJ

3

A
(3)
1,2 −NeJ2 ∓ 23

294

√
2NfNeJ +

1

30
J4 ∓ 7

3
NeJ

3

B
(3)
1,2 −1

2
NfJ +

17

16

√
2NfJ

2 −NeJ2 −2897

2352

√
2N2

f J +

�
311

98
± 23

588

√
2

�
NfNeJ +

1

30
J4 +

7

3
(Nf ∓Ne)J3

C
(3)
1,2 +

1

2
NfJ +

17

16

√
2NfJ

2 −NeJ2 +
2897

2352

√
2N2

f J −
�

311

98
± 23

588

√
2

�
NfNeJ +

1

30
J4 − 7

3
(Nf ∓Ne)J3

The number of points in an orbit equals the order of
the group Td×T divided by the order of the stabilizer of
the orbit. For all critical orbits represented in Table 8 this
number of points equals the number of conjugated stabiliz-
ers in the Td group times two. Points on CP2×CP1×S2 are
never invariant with regard to T because points (j1, j2, j3)
on the rotational sphere S2 are not T -invariant. Therefore,
we should always double the number of points to account
for T . The number of conjugated subgroups S4, C3, and
Cs of the Td group is 3, 4, and 6 respectively (consider
axes C4, C3, and C′2 of the cube) and consequently orbits
with these stabilizers have 6, 8, and 12 points. This fact
has a well-known manifestation in rotational energy level
spectra in the form of 6, 8, and possibly 12-fold degenerate
groups of levels or clusters [6–8].

4.2 Energy of fixed relative equilibria

We begin with critical orbits, i.e., isolated fixed points
of the Td×T group action on the reduced phase space
CP2×CP1×S2 which are always stationary points of Heff .
The position of these points on CP2×CP1×S2 is fixed
and the corresponding RE are called fixed. The energy of
these RE equals the value of Heff at the points in Table 8.
It is computed directly after we use Table 3 to express
Heff presented in Tables 4 and 5 as function of (z, z̄) and
(j1, j2, j3). Resulting values of H2, H4, and H6 in (16) are
presented in Tables 9 and 10 for each RE in Table 8. The
scalar part

Hscalar =
√

2Nf +Ne +
1
2
ε2J2 − 7

60
ε6J4,

which is common to all RE, is subtracted from these val-
ues. The actual energy thus equals

ω
(
Hscalar + ε2H2 + ε4H4 + ε6H6

)
.

It is instructive to consider critical orbits in different lim-
iting cases. For pure rotation Ne = Nf = 0, J 6= 0, orbits
A, B, C become indistinguishable and we have 6, 8, and 12
rotational RE with stabilizers C4, C3, and C2 respectively.

In the case of pure E-mode vibrations with J = Nf =
0, we come to a 1:1 oscillator with 3-fold symmetry. (Re-
call that the image of S4 and Cs in the representation
spanned by the E-mode variables is C2 and C′2). Other
well-known systems of this kind are the Hénon-Heiles os-
cillator or the E-mode of the triatomic ion H+

3 [15,14].
There are 8 nonlinear normal modes, denoted in [12] as
Π7,8 (Π7 is the reversal image of Π8, both have stabilizer
C3), Π1,2,3 (stabilizer C2) and Π4,5,6 (stabilizer C′2). In
the notation of Table 8 they correspond to A(3)

1,2, A(2)
1 , and

A
(2)
2 respectively. (Labels A, B, C, and superscripts (2)

and (4) are identical.)
In the case of pure F2-mode vibrations with

J = Ne = 0, we have the 27 nonlinear normal modes also
initially found in [12]. These modes are illustrated in Fig-
ure 8 of [14]. The B and C type RE share the same config-
uration image shown in the top row of this figure. Modes
of the A type are shown in the bottom row. Numbers of
equivalent RE are given in Table 7.

Both in the case of pure E mode and F2 mode vibra-
tions relative equilibria correspond to periodic orbits with
action N along the orbit given by Ne and Nf respectively.
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Table 10. Values of purely vibrational anharmonic polyad terms of the reduced Hamiltonian Heff on critical orbits corresponding
to fixed RE. Upper sign in ± corresponds to the first index in 1,2.

point order ε2 terms q4 order ε4 terms q6

A
(2)
1 −45

64
N2
e −

643

2688
N2
f +

439

672

√
2NfNe +

11089081

101154816

√
2N3

f −
1405841

3161088
NeN

2
f +

4945895

3161088

√
2NfN

2
e −

6345

4096
N3
e

A
(2)
2 −45

64
N2
e −

643

2688
N2
f +

19

224

√
2NfNe +

11089081

101154816

√
2N3

f +
930283

526848
NeN

2
f +

450453

351232

√
2NfN

2
e +

2727

4096
N3
e

A
(4)
1 −45

64
N2
e −

13

672
N2
f −

67

336

√
2NfNe − 18911

6322176

√
2N3

f −
185755

1580544
NeN

2
f −

221411

395136

√
2NfN

2
e −

6345

4096
N3
e

A
(4)
2 −45

64
N2
e −

13

672
N2
f +

15

16

√
2NfNe − 18911

6322176

√
2N3

f +
23747

25088
NeN

2
f +

1

256

√
2NfN

2
e +

2727

4096
N3
e

B
(4)
1 C

(4)
1 −45

64
N2
e +

451

2688
N2
f +

439

672

√
2NfNe − 1869407

101154816

√
2N3

f +
2566355

3161088
NeN

2
f +

4945895

3161088

√
2NfN

2
e −

6345

4096
N3
e

B
(4)
2 C

(4)
2 −45

64
N2
e +

451

2688
N2
f +

19

224

√
2NfNe − 1869407

101154816

√
2N3

f −
556987

263424
NeN

2
f +

450453

351232

√
2NfN

2
e +

2727

4096
N3
e

A
(3)
1 A

(3)
2 +

9

32
N2
e −

5

16
N2
f +

31

84

√
2NfNe − 235

1536

√
2N3

f +
18337

24696
NeN

2
f −

962375

1580544

√
2NfN

2
e −

297

512
N3
e

B
(3)
1,2 C

(3)
1,2 +

9

32
N2
e +

127

1344
N2
f +

31

84

√
2NfNe +

9783049

2133273

√
2N3

f −X±NeN2
f −

962375

293273

√
2NfN

2
e −

297

29
N3
e

where X± = −
�

29× 62053

2103273
± 11× 42701

2113272

√
2

�

The series for the energy Heff(N) = h can be inverted to
obtain the action as a function of energy N(h).

4.3 Stability of fixed relative equilibria

To complete the characterization of relative equilibria we
should specify their stability and, possibly, indicate if this
stability can change when the parameters of the system,
such asNf , Ne, and J , vary. Full stability analysis requires
additional mathematical tools and can be quite compli-
cated (see [27]). Here we only study one simple, important
case of the vibrational F2 mode RE A(4).

The F2 mode reduced Hamiltonian Hnf is obtained
from the general normal form in Tables 4 and 5 when J
and Ne are set to 0. This Hamiltonian describes a reduced
1:1:1 oscillator system with symmetry Td×T . The energy
of the A(4) relative equilibrium of this system is obtained
in the same way from the general expression in Tables 9
and 10. To determine the linear stability of this RE we
use a simple method which resembles the Poincaré sur-
face of section construction in the original phase space
C3 with coordinates (z1, z2, z3) and conjugated momenta
(z̄1, z̄2, z̄3). One of the three A(4) equilibria on CP2 (see
Tab. 8a) has coordinates

z1 = z2 = 0, z3 =
√

2Nf .

Near this point on CP2 we can use the map

(z1, z2, z3)
∣∣
CP2
→
(
z1, z2,

√
2Nf − z2

1 − z2
2

)
,

which brings us from CP2 to a complex plane C2 with
canonical coordinates (z1, z̄1) and (z2, z̄2) [40]. We ap-
ply this map to Hnf and use a power series expansion in

(z1, z̄1, z2, z̄2). The resulting Hamiltonian describes small
oscillations about the RE. The matrix of the linear part
of the flow of the corresponding vector field XH has eigen-
values (ω,−ω, ω,−ω) where

ω = −1.6227 ε2n2 + 0.6825 ε4n3 + ...

We conclude that the A(4) relative equilibrium of the
F2 mode vibrations is unstable and has the signature
(−+−+). This has an interesting consequence. Assuming
that Hnf is a Morse function on CP2 and using the re-
quirements for such functions in the presence of the Td×T
group action we can now show [27] that there are addi-
tional RE which do not lie on the critical orbits (fixed
points) of the group action. In other words, the vibra-
tional Hamiltonian which describes the ν3(F2) mode po-
lyads of P4 on the basis of our model potential (11) is not
of the simplest possible kind and has more than necessary
minimum of RE.

We should further remark that extending the above
analysis to the full reduced phase space CP2×CP1×S2,
i.e., to the case of nonzero J and Ne, is straightforward
but surely more cumbersome. Vibrational RE of the F2

mode system can be continued when J and Ne are suf-
ficiently small compared to Nf . Some of these RE bifur-
cate at larger J and Ne. When going towards the large J
limit these bifurcations can be considered as part of the
rotation-vibration re-coupling process.

4.4 Relative equilibria on non-critical orbits

We have seen in the previous section that our model for
the ν3 mode vibrational Hamiltonian has relative equilib-
ria on non-critical orbits of the Td×T group action on
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J = 0 J > 0

X1

X2
X3

Fig. 5. Cs invariant sphere in the CP2 subspace when J = 0
(left) and two correlating Cs invariant spheres in the CP2×S2

space when J > 0 (right). Black disk, square, and triangles de-
note critical orbits and corresponding vibrational RE of type
A(2), A(4), and two RE of type A(3) respectively. White disks
mark the position of the additional pair of equivalent vibra-
tional RE. Black and grey ovals on the right denote four
additional vibration-rotation RE. Bold lines represent one-
dimensional strata.

the reduced phase space CP2. Analysis of this action on
the rotation-vibration reduced phase space CP2×CP1×S2

and application of Morse theory show that any reduced
Hamiltonian Heff always has stationary points which do
not lie on critical orbits (i.e., are not fixed RE). The idea of
the proof [27] is to verify that Morse theory requirements
are satisfied on all invariant subspaces of the Td×T group
action on CP2 and CP2×CP1×S2. The six Cs-invariant
2-spheres SCs2 turn out to be of primary interest.

In the pure F2 mode system (J = Ne = 0) the action
of Td×T on SCs2 has four fixed points which correspond to
relative equilibria A(2), A(4) (studied in Sect. 4.3) and a
pair ofA(3). With rotation taken into account (J > 0) each
of the six Cs invariant spheres on CP2 lifts to two equiv-
alent spheres in CP2×S2 related by time reversal T (see
Fig. 5). No fixed points (no critical orbits) of the group
action and therefore no fixed RE listed in Table 8 remain
on the 12 spheres. Finally, with the E-mode also taken
into account (Ne > 0) we have 24 equivalent Cs spheres
in CP2×CP1×S2 with no critical orbits on them.

The Cs symmetry operation is symplectic and SCs2 are
dynamically invariant subspaces of CP2×CP1×S2. Dy-
namics on SCs2 is given by the flow of HCs

eff which is the
reduced Hamiltonian Heff restricted on SCs2 and which we
assume to be a Morse function. By Morse theory require-
ments, HCs

eff must have at least two stationary points on
SCs2 , a maximum and a minimum, which constitute the
total of 48 additional rotation-vibration RE.

In the rest of this section we consider RE on non-
critical orbits in the two important limiting cases, the ν3

polyads with J = Ne = 0 and fast rotational states where
J � Nf and J � Ne. These cases correspond to the left
and right part of Figure 5.

4.4.1 Cs invariant subspace of CP2 and CP2×CP1×S2

We consider one of the Cs-invariant spheres with stabilizer
Cxys . Operation Cxys acts on the rotational phase space S2

as rotation through π about the diagonal line in the (j1, j2)
plane. Rotational coordinates are, therefore, fixed

j3 = 0, and j1 = −j2 = ±J/
√

2.

Action of Cs on the E-mode space CP1 amounts to a
similar rotation; the E-mode coordinates are

v1 = v3 = 0, and v2 = ± 1
2Ne,

or in terms of complex variables

(z4, z5) =
(√

2Ne, 0
)

or
(
0,
√

2Ne
)
.

On the F2-mode space CP2 the image of the operationCxys
is a C2 rotation about the axis orthogonal to the z1 = z2

(i.e., x = y) plane. The invariant subspace CP1 ⊂ CP2

lies in the z1 = z2 plane and can be described using two
complex coordinates (ζ, z3) where ζ = (z1 + z2)/

√
2 and,

of course,

1
2

(ζζ̄ + z3z̄3) = Nf .

4.4.2 Poisson structure of the Cs restricted system

Equations of motion on the Cs invariant subspace CP1 ∼
S2 (see [27]) are Euler-Poisson equations for the angular
momentum components

(X1, X2, X3) =
1
4
(
iζz̄3 − iz3ζ̄, ζz̄3 + z3ζ̄, ζζ̄ − z3z̄3

)
,

which generate the Poisson algebra P(X1, X2, X3) with
the bracket

{Xi, Xj} = εijkXk,

and the Casimir

X2
1 +X2

2 +X2
3 =

(
Nf
2

)2

·

Obviously, P is the Lie algebra so(3). The last equation
can be used to represent SCs2 in the ambient space R3 with
coordinates (X1, X2, X3).

4.4.3 Residual group action and Morse theory

Position of the RE on SCs2 can be specified more precisely
if we account for the nontrivial residual action of the sym-
metry group Td×T on this space [27]. In the purely vi-
brational system we have two symmetry operations which
map SCs2 into itself, the time reversal T and T2 which
is a combination of T and rotation C2 about one of the
axes 1, 2, or 3 (i.e., axes (x, y, z) corresponding to axes S4).
Any point with nonzero rotational coordinates (j1, j2, j3)
is moved by the T operation and the latter cannot be
considered in the full rotation-vibration system. (In fact
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T maps one SCs2 space into another with rotational coordi-
nates (−j1,−j2,−j3).) In our example with stabilizer Cxys ,
the particular T2 operation is Cz2 ◦ T (to verify compute
Cz2 ◦ T (j1, j2) = Cz2 (−j1,−j2) = (j1, j2)). This operation
sends (X1, X2, X3) to (X1, −X2, X3). The time reversal
operation T changes the sign of X1.

Operations T and T2 generate a group of order four
whose action on SCs2 in the F2-mode reduced phase
space CP2 is identical to that of the point group C2v

on a sphere in the ambient 3-space with coordinates
(X1, X2, X3). The two fixed points of this action corre-
spond to vibrational RE A(2) and A(4) shown in Figure 5,
left. The action has two invariant one-dimensional circles
(which are intersections of the two symmetry planes and
the sphere). Action of the C3 operation on CP2 adds a pair
of equivalent fixed points A(3) which lie on the X1 = 0 cir-
cle of SCs2 and constitute one orbit of the T2 operation.

In the full rotation-vibration system, the X1 = 0 cir-
cle is no longer an invariant subspace of SCs2 which has
no fixed points of the Td×T group action. When J > 0,
the Cs restricted reduced Hamiltonian HCs

eff is no longer
T -invariant but it remains T2-invariant and it should have
(at least) two stationary points on the T2-invariant circle
where X2 = 0 (see Fig. 5, right). Position of these points
depends on the concrete Hamiltonian Heff and is a func-
tion of integrals Nf , Ne, and J .

4.4.4 Vibrational RE in the limit J = Ne = 0

The stability analysis of the A(4) relative equilibrium in
Section 4.3 indicated that our model of the ν3(F2) mode
vibrations of P4 has additional RE. A priori we can-
not know the position of these RE on the reduced phase
space CP2. Comparison of the energies and stability of
all fixed RE can help reducing the number of possibili-
ties. A definitive answer is obtained by a direct study of
the reduced Hamiltonian function restricted to various in-
variant subspaces of CP2. It turns out that for our model
additional stationary points lie on the Cs invariant sphere.

After restricting Heff to the Cxys invariant sphere as
described in Section 4.4.1 and setting J and Ne to 0 we
obtain

H(X1, X3) =
√

2Nf

+
(

547
2421

X2
1 −

197
277

X3Nf +
591
277

X2
3 −

3163
2921

N2
f

)
ε2 + ...

The set of the stationary points of H(X1, X3) is defined
qualitatively by the quartic anharmonic terms Vffff of
order ε2. The plot of this function shown in Figure 6 con-
firms that the two additional RE lie on the T2-invariant
circle (X2 = 0). These RE are mapped into each other by
time reversal symmetry T . To find these relative equilibria
we restrict equations of motions

Ẋ =
{
X,H(X1, X3)

}
= 0,

to the X2 = 0 circle and solve the sole remaining equation

Ẋ2 =
(

197
896

Nf +
2603
1344

X3

)
X1ε

2 + ... = 0
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Fig. 6. Normal form Heff with J = 0, Ne = 0, and Nf = 10
restricted to the Cs invariant sphere in the CP2 space; the
value of ε is taken from (19b). The function HCs

eff is shown on
the left as a surface in the ambient 3-space with coordinates
(X1, X2,X3). Orientation of axes and position of RE corre-
sponds to Figure 5. Black and white stripes represent arbitrar-
ily spaced constant level sets of HCs

eff . The value of HCs
eff on the

one dimensional strata X1 = 0 (lower trace) and X2 = 0 (up-
per trace) is shown on the right. Dashed lines give the energy
of RE located on the Cs invariant sphere when J = 0.

for X3 ≈ 0 taking into account that

X1 = ±
√(

1
2Nf

)2 −X2
3 .

The solution obtained by Newton’s iteration

arctan
(
X3

|X1|

)
π

180
= −13.123 + 61.581ε2Nf + ...

shows how the stationary point moves slowly along the T2

invariant circle as the value of the polyad integral Nf in-
creases. At this point the Hamiltonian H(X1, X3) attains
its maximum

√
2Nf (1 + 0.088597 ε2Nf + 0.180735 ε4N2

f + ...)

which gives the energy of the additional RE.

4.4.5 Rotation-vibration relative equilibria for J� N

Additional rotation-vibration RE also lie on the T2 in-
variant circle in the SCs2 subspace of CP2×CP1×S2 (see
Fig. 5, right). Again we restrict our Heff to the Cxys invari-
ant sphere (by setting z1 = z2), express it as a function
of (X1, X2, X3) or in fact of (X1, X3) only, and solve the
equations for stationary points

Ẋ2 = {X2,H
Cs
eff } = 0, X2 = 0, X2

3 +X2
1 =

(
Nf
2

)2

.

With quartic (and higher) anharmonic terms included in
Heff these equations for RE are strongly nonlinear be-
cause, contrary to the purely vibrational case, powers of ε
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do not reflect degrees in X . Such equations can in general
be solved only numerically.

We can simplify the general case by assuming that ex-
citation of mode F2 is small, i.e., that Nf and hence |X |
are small (compared to J). We will also make a similar
assumption for the E mode. This important limit corre-
sponds to the case of spectroscopic description of the ro-
tational structure of the fundamental states νF2

3 and νE2 ,
and the combination state νF2

3 + νE2 . Neglecting all terms
in HCs

eff of degree in (Nf , X1, X3) and Ne larger than 1 we
obtain the Hamiltonian HCs which is linear in X ,

HCs = b(J)X1 − a(J)X3 + c(J,Nf , Ne) ≈ HCs
eff , (17a)

with coefficients

a = −5
√

2
4
ε4J2, b = −ε2J +

85
24
ε6J3, (17b)

and an additive constant

c = Ne +
√

2Nf +
1
2
ε2J2

+
(

41
48

√
2Nf −

5
8
Ne

)
ε4J2 − 5

48
ε6J4. (17c)

(The first three terms in (17c) come, obviously, from the
harmonic oscillator H0 and rigid body rotator.) The solu-
tion of the linear equation Ẋ2 = 0 obtained for (17a),

(X1, X2, X3) = ± Nf

2
√
b2 + a2

(b, 0,−a),

was used in [22] and is discussed in more detail in [27].
Since a(J) and b(J) depend differently on J the two RE
move along the T2 invariant circle. When J is small b� a
and the RE stay near the point X3 = 0, at large J they
approach X1 = 0. Their energies are

±Nf
2

√
b(J)2 + a(J)2 + c(J,Nf , Ne). (18)

5 Rotational structure of vibrational states

The normal form Heff in Tables 4 and 5 provides a
model description of the vibration-rotation dynamics of
the P4 molecule. In order to understand whether the
model works (at least qualitatively) we should compare
our classical description with quantum states. Such com-
parison is based on the known classical–quantum corre-
spondence formulae for the three integrals of motion, Nf ,
Ne, and J , and dynamical variables (z, z̄) and (j1, j2, j3)
which are summarized in Table 11.

In certain cases, however, especially for low vibrational
excitations, it is interesting to replace classical actions
nf and ne for quantum numbers Nf and Ne without the
Maslov index correction ( 3

2 and 1 respectively). In partic-
ular, when our general expressions are restricted to con-
tributions of the terms which are at most quadratic in

Table 11. Quantum-classical correspondence formulae used in
the analysis of the rotation-vibration Hamiltonian Heff .

classical quantum

J
p
J(J + 1) ≈ J + 1

2

Nf Nf + 3
2

Ne Ne + 1

(z, z̄)
√

2(a, a+)
j1 = J cos θ J1

j2 = J sin θ cosϕ J2

j3 = J sin θ sinϕ J3

(z, z̄), i.e., the terms which are normally used by spectro-
scopists to describe phenomenologically the fundamental
states νF2

3 (Nf = 1, Ne = 0) and νE2 (Nf = 0, Ne = 1) as
isolated states, substitution of nf = 1 and ne = 1 repro-
duces exactly the semi-quantum rotational energy surfaces
discussed in Section 1.1.

We can construct a quantum analogue of Heff using
Tables 4 and 5, compute quantum energies, and com-
pare them, if possible, with experimental data. Quan-
tum calculations can be readily done using the STDS
programs [41] once the correspondence of the terms in
Heff and quantum operators in [38,41] is established. We
can also take expressions for the energies of rotation-
vibration RE (Tabs. 9 and 10), replace Nf , Ne, and J
for their quantum analogues (Tab. 11) and consider the
qualitative structure (e.g., bands, clusters of rotational
states, sequences of clusters, etc.) of the rotation-vibration
energy level spectrum. In both cases, we need to deter-
mine first the values of the two “adjustable” parameters
of our model, ω and ε, i.e., the strength of the atom–atom
bond and the equilibrium geometry. This is done in Sec-
tion 5.2.1.

5.1 The ground state of P4

The ground state constants of P4 are computed in [29]
from the energies of purely rotational RE. The main qual-
itative result of this computation is the correct relation
EC3 > EC2 > EC4 of the energies of the three rotational
RE which is defined by the sign of the parameter of the
principal tetrahedral splitting term R4(4,A1) of the effec-
tive ground state rotational Hamiltonian. For the same
one-parameter model we use presently in (11) the ground
state constants are given in equation (31) of [29], where
the dimensionless smallness parameter ε′ is related to our
ε in (15d) as

2ε′ =
(
KmR4

)−1 = ε4.

It follows from (15f) that B0 ε
′ = ωε6/4 and that the

main tetrahedral splitting constant in equation (31) of [29]
equals

t4(4,A1) = −
√

15
4
√

2
Dt = −

√
15

4
√

2
B0

ε′

20
= −
√

30
640

ωε6,
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which matches our result in Table 4. The scalar constants
in [29] are not reproduced entirely in Table 4 because the
totally symmetric “breathing” mode qA1 is excluded in
our present study.

5.2 The ν3 vibrational mode and its overtones

5.2.1 The νF2
3 fundamental state

The energy level structure of the νF2
3 fundamental state

(Nf = 1, Ne = 0) of P4 was reconstructed by Boudon et
al . [23] using an effective phenomenological Hamiltonian
Heff with parameters fitted to experimental data. Our
model in Table 4 also predicts the values of the param-
eters in

Heff = ω
√

2H0
ff + ωH0

ee +
ω

2
εj2 +

√
6ω
4

εH
1(1,F1)
ff + ...,

= νfT
0
ff + νeT

0
ee +B J2 + t

1(1,F1)
ff T

1(1,F1)
ff + ...

Here the spectroscopic notation of [23] is used in the sec-
ond row, B is the ground state rotational constant, νE
and νF are frequencies. Comparing coefficients in front of
j2 and H0

ff to those fitted to experimental data in [23] we
find

ω =
νF2√

2
, ε2 = −4

3
t1(1,F1)

νF2

=
2B
ω
, (19a)

which gives the numerical values

ω ≈ 329.63, ε ≈ 0.02617. (19b)

We can now substitute (19b) in the expressions of Ta-
ble 9 and plot the energy–momentum diagram of relative
equilibria of P4 shown in Figure 7. In this figure we used
nf = 1 for a simpler comparison with the data of [23].

It can be seen that our model reproduces correctly
the qualitative structure of each of the three branches
of the ν3 state. In the upper and lower branches of ν3

we have EC3 > EC2 > EC4 while in the central branch
EC4 > EC2 > EC3 . Internal splitting of the branches is
also reproduced to an extent and sixth order of the nor-
mal form brings further improvement (see Fig. 7). The
discrepancy in the overall J-dependence of the predicted
RE energies is at least partially related to our neglect-
ing the totally symmetric mode νA1

1 , i.e., setting qA1 and
pA1 in the initial rotation-vibration Hamiltonian in equa-
tions (9) and (11) to zero. More improvement is likely if
an anharmonic bond potential or a Morse potential (such
as in Sect. 1.4) is used. Our complete classical model re-
produces rotational structure of all vibrational polyads. In
the J = 0 limit, rovibrational relative equilibria become
vibrational relative equilibria which describe the internal
structure of higher vibrational polyads with Nf � 1. This
structure does not show up at Nf = 1 where the νF2

3
fundamental state is simply a triply degenerate quantum
level.

ν3=1
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Fig. 7. Relative equilibria (RE) with Nf = 1 and Ne = 0 and
the structure of the νF2

3 fundamental state of the P4 molecule.
Bold lines show RE energies obtained for our model in Table 9;
dotted lines show the same energies truncated at order ε4; grey
shaded area represents quantum energy levels of P4 shown in
Figure 1 according to [23]. In this and subsequent figures, en-
ergies are plotted without the scalar term Hscalar(J). The type
of RE (A, B, and C) and symmetry index (k = 2, 3, 4) corre-
spond to the notation A(k), B(k), C(k) of Tables 8 and 9, and
equation (18).

5.2.2 The 2ν3 overtone

The 2νF2
3 state of P4 has not yet been observed experi-

mentally. It has three vibrational components of respec-
tive symmetries A1, E and F2. Only the F2 component
is active in the absorption spectrum. Our model in Ta-
ble 4 predicts that the energies of the three components
at J = 0 increase in the order A1, F2, E as shown by the
leftmost levels in the zoomed part of Figure 8. The split-
ting at J = 0 is due to the quartic terms Vefef of order ε2.
It quickly gives way to the Coriolis splitting of order ε2J
when J increases. The global structure at large J is that
of a fivefold vibrational level E +F2 whose five rotational
branches are superimposed on the single branch of the A1

component (see Fig. 8).
We can see in Figure 8 that the above energy level

spectrum is well represented by the RE energies. The cor-
respondence between the quantum branches and the RE
is, however, more complicated. Branches with maximum
and minimum energy and part of the central branch can
be considered as composed of states which tend to lo-
calize near single RE’s. Localization in other branches is
likely to involve several different kinds of RE at once (e.g.,
localization near a 2-torus). Further analysis of our pre-
diction for 2ν3 shows that the internal structure of the
upper and lower branches of 2ν3 changes qualitatively
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Fig. 8. Relative equilibria (RE) with Nf = 2 and Ne = 0 and
the structure of the rotation-vibration levels of the 2ν3 state
of P4. Bold lines show energies of fixed RE in Table 9; grey bars
represent quantum energy levels computed using the Hamilto-
nian Heff in Table 4 without the scalar terms in Hscalar(J). The
type A, B, and C and symmetry index k = 2, 3, 4 correspond
to the RE notation A(k), B(k), C(k) in Tables 8 and 9.

near J ≈ 15 when rotation-vibration terms of order ε2J2

outweigh purely vibrational splitting of order ε2 and the
energies of (B,C)(4) and (B,C)(3) equilibria change places
so that at larger J both branches have EC3 > EC4 , i.e.,
just as in the ν3 state.

5.2.3 Higher polyads of the νF2
3 -mode

In the previous paragraphs, we considered two ν3-mode
states of P4 with comparatively high rotational excita-
tion, i.e., with J � N . The purely vibrational limit with
Ne = J = 0 can also be described using the same general
normal form Heff in Tables 4 and 5. Characterization of
the vibrational polyads of the νF2

3 -mode follows Section 3
of [14] and [16,17]. This is a higher dimensional generaliza-
tion of the previous work on 1:1 and 1:2 resonant systems
in [11,42].

Most of the analysis of the RE system of the ν3 mode
is done in Sections 4.3 and 4.4.4 where we complete the
list of RE of this system. The energies of fixed RE are
given in Tables 9 and 10; the energy of the additional RE
on the Cs-invariant sphere is obtained in Section 4.4.4.
In Figure 9 we plot these energies as function of the ν3

polyad number Nf with J = Ne = 0. We compare them
to quantum levels computed using the quantized normal
form of order four. (To simplify the comparison we use
nf = Nf instead of the quantum formula in Tab. 11.) We
find 6-fold and 4-fold quasi-degenerate vibrational levels
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Fig. 9. Energy of the relative equilibria of P4 corresponding
to the critical points of the Td×T action on CP2 (solid line),
additional RE on the Cs invariant sphere (dotted line) and the
structure of the ν3 polyads predicted using the quantized 4th
order normal form in Table 4. The notation follows Tables 8
and 9.

Table 12. Quasidegenerate 4-fold and 6-fold states (clusters)
at the maximum and minimum energy of the ν3-mode polyads
of P4 predicted using the quantized 4th order normal form in
Table 4. Compare to the whole energy level spectrum in Fig-
ure 9. Reduced energies of quantum levels and relative equilib-
ria are in cm−1.

Nf 6 7 8

B(4) 1.36 1.85 2.42

6 fold

8<
:

1.32 E
1.21 F2

1.05 A2

�
1.76 F2

1.64 F1

8<
:

2.33 A1

2.23 F1

2.20 E
...

...
...

4 fold

�
−2.27 F2

−2.50 A1

�
−3.01 A1

−3.27 F2

�
−4.19 F2

−4.36 A1

A(3) −2.55 −3.47 −4.53

near the maximum and minimum energy of each polyad
which correspond to the states localized near (B,C)(4)

and A(3) relative equilibria. Table 12 gives positions of
extremal vibrational clusters corresponding to the C3v ∧
T (A(3)-type) and S4 ∧ T2 B(4)-type) critical orbits for
Nf = 6, 7, 8. We can see in Figure 9 that even at such
low Nf these extremal clusters are well pronounced. Their
width is small compared to the separation from the rest
of the spectrum. Detailed analysis of the level structure at
intermediate polyad energies is beyond the scope of this
paper.
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5.3 The ν2 vibrational mode and its overtones

Unlike the νF2
3 mode states, the νE2 mode states lack the

Coriolis interaction of order ε2. This makes purely vibra-
tional terms in Heff of order ε2 much more prominent. The
main rotation-vibration interaction term H

2(2,E)
ee of order

ε4q2J2 becomes dominant only when J > Neε
−1 ≈ 40Ne

(see Tabs. 4 and 9). The structure of the energy level spec-
trum in the large J limit is further defined by terms of
order ε6.

5.3.1 The νE
2 fundamental state

The E-mode fundamental is a “dark” state in the absorp-
tion spectrum of P4. Transitions to this state from the
ground state are described by the ε2 term of the trans-
formed dipole moment (see Tab. 6), and the intensity of
such transitions is ∝ ε4j2 or approximately 10−6j2 times
smaller than that of the ν3 band. In real life this means
that the 0 → ν2 band simply cannot be observed in ab-
sorption spectroscopy. The νE2 mode is Raman active. The
spontaneous Raman spectrum by Brassington et al. [43]
recorded at a relatively low resolution of 0.14 cm−1 is in-
sufficient for the rotational analysis. A high-resolution Ra-
man spectrum of the 0 → ν2 transition has not as yet been
observed. Due to the low frequency of the band the CARS
technique (with a non-collinear BOXCARS arrangement)
should probably be most appropriate.

The structure of the ν2 state can be easily recon-
structed from the RE energies in Table 9 with Nf set
to 0. Like in the case of ν3, we set Ne = 1 and neglect
quartic anharmonicity Veeee in order to obtain a simpler
picture. The resulting energy-momentum diagram in Fig-
ure 10 shows the small internal splitting of the ν2 state of
order ε4J2. The lower of the two branches of the ν2 state is
well split, while the upper branch crosses over itself. This
crossover phenomenon is discussed in [44,45]. The value
of J at which it occurs and the branch involved is deter-
mined by the values and signs of the three parameters,
t2(2,E), t3(3,A2) and t4(4,A1). The latter are in turn defined
by our model.

5.3.2 The 2ν2 overtone

The 2ν2 state has two vibrational components of sym-
metries A1 and E; both components are only Raman
active and none has been observed experimentally. Our
model predicts that the splitting at J = 0 equals
ωε2N2

e ≈ 1 cm−1 (see Fig. 11, top) and that the en-
ergy of the A1 component is lower. The 2ν2 state is shown
in Figure 11, top, in the process of a transition from the
structure dominated by vibrational splitting to that of the
rotational limit. One of the most intriguing features of
this state is the redistribution of a group or, possibly, a
branch of levels between its two components. Analysis of
the quantum-classical correspondence in such transitional
case requires a separate study. We only remark that quan-
tum correction in Table 11 should be used, and the ν2
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Fig. 10. Relative equilibria of P4 with Ne = 1 and Nf = 0, and
the structure of the νE2 fundamental state. Model prediction.

mode polyads with large Ne should be considered. Ad-
ditional RE and their bifurcations should be looked for
in such an analysis. On the other hand, the correspon-
dence with RE becomes obvious when the structure of
2ν2 simplifies in the fast rotation limit where J � 80. To
illustrate this limit using “reasonable” J values we drew
energy momentum diagrams with artificially small E–A1

splitting,

∆J=0 = EE −EA1 = tEeeee − tA1
eeee,

in the bottom panel of Figure 11.

5.4 The νE
2 + νF2

3 state

The νE2 + νF2
3 state of P4 can and probably has been

observed experimentally as the upper state of the hot
band ν2 → ν2 + ν3. However, no assignment has as yet
been given. This makes predictions of the structure of
this state particularly interesting. The quantum νE2 + νF2

3
state has two vibrational components of symmetries F1

and F2. Both components can have Coriolis splitting sim-
ilar to that of the ν3 fundamental state (i.e., linear in
j). From the RE plot of the νE2 + νF2

3 state in Figure 12
we can see that at sufficiently high rotational excitation
(when J > 5) rotational structure of this state can be
regarded as two superimposed systems of three Coriolis-
type branches diverging linearly with J . The energies of
the C3 relative equilibria of both systems are very close,
while the C4 equilibria in the upper and lower branch are
split. Internal rotational structure of both branches seems
to correlate with the initial splittings at J = 0. The cen-
tral branch appears to be more complicated, the process
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Fig. 11. Relative equilibria of P4 and the structure of the 2ν2

state calculated for the model Hamiltonian Heff in Table 4.
The values Ne = 2 and Nf = 0 are used for the RE energies.
In the bottom panel, the splitting ∆ of the two components
of 2ν2 is set to zero (left) and taken 10 times smaller (right)
than that predicted by the model while all other terms in Heff

remain the same.

of transition to the high rotational excitation limit (recou-
pling) is slower.

The system of vibrational RE at J = 0 calls for a
special comment. It does not correlate with two quantum
states F1 ⊕ F2, instead it represents nν3 + nν2 polyads
with large n. We can see in Figure 12, bottom, how these
polyads change as the value of J rises. The transforma-
tion involves additional RE which undergo bifurcations.
Analysis of this region, especially at low polyad quantum
numbers is always difficult. To circumvent this difficulty
in Figures 7 and 10 we purposely disregarded quartic and
sextic anharmonic terms of Heff .
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Fig. 12. Energies of relative equilibria of P4 corresponding to
the critical points of the Td×T action on CP2×CP1×S2 and
the rotational structure of the νF2

3 + νE2 state (Nf = Ne = 1)
predicted on the basis of order 6 normal form. Global view
(top), enlarged part of the plot near J = 0 (bottom right) and
similar plot for the ν3 state (bottom left).

6 Discussion

The main outcome of this work is a number of in-
teresting qualitative predictions about the structure of
rotation-vibration states of the polyatomic molecule P4.
In more general terms, we have presented a complete self-
consistent scheme of rotation-vibration analysis based on
a classical dynamical study. Rotation-vibration relative
equilibria become the primary objective of this analysis,
they are studied on the basis of the normalization (aver-
aging) of approximate oscillator symmetries (or symme-
tries of the polyad approximation) introduced for the vi-
brational degrees of freedom. Given the complexity of our
example, the relative simplicity of the analysis, and the re-
sults, we conclude that the proposed method is by far the
most adequate technique of extending rotation-vibration
analysis far into the region of excited rotation-vibration
states.
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4. B.I. �Zhilinskíı, Teori �ya slo�zhny �kh molekul �yarny �kh spektrov
(Moscow University Press, 1989), in Russian, English title:
Theory of complex molecular spectra.

5. M.S. Child, in Computational Molecular Spectroscopy ,
edited by P. Jensen, P.R. Bunker (Wiley, Chichester,
2000).

6. A. Dorney, J.K.G. Watson, J. Mol. Spectrosc. 42, 135
(1972).

7. W.G. Harter, C.W. Patterson, J. Math. Phys. 20, 1453
(1979).

8. W.G. Harter, C.W. Patterson, J. Chem. Phys. 66, 4872
(1977); C.W. Patterson, W.G. Harter, J. Chem. Phys. 66,
4886 (1977); W.G. Harter, C.W. Patterson, J. Chem. Phys.
80, 4241 (1984).
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